Manned Mission To Mars Close To Possibility As New Tech Transforms Salty Water To Oxygen And Fuel

KEY POINTS

  • Unlike NASA’s MOXIE, this new technology can produce oxygen and hydrogen from salty water
  • The team behind this device wants to partner with NASA for its goal of bringing humans to Mars by 2023
  • Apart from Martian missions, the new technology is also useful on Earth

Access to water and fuel remains to be the biggest barrier to manned missions to Mars. The good news is that a new electrolyzer technology could trample that obstacle, making it possible for humans to survive the extreme conditions on the Red Planet. 

A team of engineers developed an electrolyzer device that can turn salty water into fuel and oxygen. Details of their development were published in the proceedings of the National Academy of Sciences.

This device can produce 25 times more oxygen than NASA’s Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE), which is currently used by the Perseverance rover that’s currently on its way to Mars.

Unlike MOXIE, which produces oxygen from carbon dioxide, the new tech from the engineers of Washington University can produce both oxygen and hydrogen even from salty water. 

“Our novel brine electrolyzer incorporates a lead ruthenate pyrochlore anode developed by our team in conjunction with a platinum on carbon cathode,” Vijay Ramani, lead author and professor at the McKelvey School of Engineering at Washington University, said in a press release.  

“These carefully designed components coupled with the optimal use of traditional electrochemical engineering principles has yielded this high performance,” he explained further.

The team hopes it could partner with NASA for its goal of bringing humans to Mars by 2023. After all, it performed a simulation of the Martian atmosphere at -33 degrees Fahrenheit in testing its brine electrolysis device.  

Salty water is abundant on Mars, a fact that has already been established by various studies in the past. In September, three underground lakes were also discovered on the Red Planet. The waters were found to contain extremely salty components. 

Apart from Martian missions, the technology is also useful on Earth, according to the engineers. The standard electrolysis device on Earth requires pure water, whereas this new device can make oxygen and fuel even from salty water, making it more economical to use. 

The electrolysis system also has diverse applications. For instance, submarines for deep ocean exploration can rely on the system to produce enough supply of oxygen and fuel from salty water.

Mars seen from the Hubble space telescope Mars seen from the Hubble space telescope Photo: NASA / NASA

Source Article

Read more

New tech can get oxygen, fuel from Mars’s salty water

Mars
Credit: CC0 Public Domain

When it comes to water and Mars, there’s good news and not-so-good news. The good news: there’s water on Mars! The not-so-good news?


There’s water on Mars.

The Red Planet is very cold; water that isn’t frozen is almost certainly full of salt from the Martian soil, which lowers its freezing temperature.

You can’t drink salty water, and the usual method using electricity (electrolysis) to break it down into oxygen (to breathe) and hydrogen (for fuel) requires removing the salt; a cumbersome, costly endeavor in a harsh, dangerous environment.

If oxygen and hydrogen could be directly coerced out of briny water, however, that brine electrolysis process would be much less complicated—and less expensive.

Engineers at the McKelvey School of Engineering at Washington University in St. Louis have developed a system that does just that. Their research was published today in the Proceedings of the National Academy of Sciences (PNAS).

The research team, led by Vijay Ramani, the Roma B. and Raymond H. Wittcoff Distinguished University Professor in the Department of Energy, Environmental & Chemical Engineering, didn’t simply validate its brine electrolysis system under typical terrestrial conditions; the system was examined in a simulated Martian atmosphere at -33 F (-36 C).

“Our Martian brine electrolyzer radically changes the logistical calculus of missions to Mars and beyond” said Ramani. “This technology is equally useful on Earth where it opens up the oceans as a viable oxygen and fuel source”

In the summer of 2008, NASA’s Phoenix Mars Lander “touched and tasted” Martian water, vapors from melted ice dug up by the lander. Since then, the European Space Agency’s Mars Express has discovered several underground ponds of water which remain in a liquid state thanks to the presence of magnesium perchlorate—salt.

In order to live—even temporarily—on Mars, not to mention to return to Earth, astronauts will need to manufacture some of the necessities, including water and fuel, on the Red Planet. NASA’s Perseverance rover is en-route to Mars now, carrying instruments that will use high-temperature electrolysis. However, the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) will be producing oxygen only, from the carbon dioxide in the air.

The system developed in Ramani’s lab can produce 25 times more oxygen than MOXIE using the same amount of power. It also produces hydrogen, which could be used to fuel astronauts’ trip home.

“Our novel brine electrolyzer incorporates a lead ruthenate pyrochlore anode developed by our team in conjunction with a platinum on carbon cathode” Ramani said. “These carefully designed components coupled with the optimal use of traditional electrochemical engineering principles has yielded this high performance.”

The careful design and unique anode allow the system to function without the need for heating or purifying the water source.

“Paradoxically, the dissolved perchlorate in the water, so-called impurities, actually help in an environment like that of Mars,” said Shrihari Sankarasubramanian, a research scientist in Ramani’s group and joint first author of the paper.

“They prevent the water from freezing,” he said, “and

Read more