Manned Mission To Mars Close To Possibility As New Tech Transforms Salty Water To Oxygen And Fuel

KEY POINTS

  • Unlike NASA’s MOXIE, this new technology can produce oxygen and hydrogen from salty water
  • The team behind this device wants to partner with NASA for its goal of bringing humans to Mars by 2023
  • Apart from Martian missions, the new technology is also useful on Earth

Access to water and fuel remains to be the biggest barrier to manned missions to Mars. The good news is that a new electrolyzer technology could trample that obstacle, making it possible for humans to survive the extreme conditions on the Red Planet. 

A team of engineers developed an electrolyzer device that can turn salty water into fuel and oxygen. Details of their development were published in the proceedings of the National Academy of Sciences.

This device can produce 25 times more oxygen than NASA’s Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE), which is currently used by the Perseverance rover that’s currently on its way to Mars.

Unlike MOXIE, which produces oxygen from carbon dioxide, the new tech from the engineers of Washington University can produce both oxygen and hydrogen even from salty water. 

“Our novel brine electrolyzer incorporates a lead ruthenate pyrochlore anode developed by our team in conjunction with a platinum on carbon cathode,” Vijay Ramani, lead author and professor at the McKelvey School of Engineering at Washington University, said in a press release.  

“These carefully designed components coupled with the optimal use of traditional electrochemical engineering principles has yielded this high performance,” he explained further.

The team hopes it could partner with NASA for its goal of bringing humans to Mars by 2023. After all, it performed a simulation of the Martian atmosphere at -33 degrees Fahrenheit in testing its brine electrolysis device.  

Salty water is abundant on Mars, a fact that has already been established by various studies in the past. In September, three underground lakes were also discovered on the Red Planet. The waters were found to contain extremely salty components. 

Apart from Martian missions, the technology is also useful on Earth, according to the engineers. The standard electrolysis device on Earth requires pure water, whereas this new device can make oxygen and fuel even from salty water, making it more economical to use. 

The electrolysis system also has diverse applications. For instance, submarines for deep ocean exploration can rely on the system to produce enough supply of oxygen and fuel from salty water.

Mars seen from the Hubble space telescope Mars seen from the Hubble space telescope Photo: NASA / NASA

Source Article

Read more

New tech can get oxygen, fuel from Mars’s salty water

Mars
Credit: CC0 Public Domain

When it comes to water and Mars, there’s good news and not-so-good news. The good news: there’s water on Mars! The not-so-good news?


There’s water on Mars.

The Red Planet is very cold; water that isn’t frozen is almost certainly full of salt from the Martian soil, which lowers its freezing temperature.

You can’t drink salty water, and the usual method using electricity (electrolysis) to break it down into oxygen (to breathe) and hydrogen (for fuel) requires removing the salt; a cumbersome, costly endeavor in a harsh, dangerous environment.

If oxygen and hydrogen could be directly coerced out of briny water, however, that brine electrolysis process would be much less complicated—and less expensive.

Engineers at the McKelvey School of Engineering at Washington University in St. Louis have developed a system that does just that. Their research was published today in the Proceedings of the National Academy of Sciences (PNAS).

The research team, led by Vijay Ramani, the Roma B. and Raymond H. Wittcoff Distinguished University Professor in the Department of Energy, Environmental & Chemical Engineering, didn’t simply validate its brine electrolysis system under typical terrestrial conditions; the system was examined in a simulated Martian atmosphere at -33 F (-36 C).

“Our Martian brine electrolyzer radically changes the logistical calculus of missions to Mars and beyond” said Ramani. “This technology is equally useful on Earth where it opens up the oceans as a viable oxygen and fuel source”

In the summer of 2008, NASA’s Phoenix Mars Lander “touched and tasted” Martian water, vapors from melted ice dug up by the lander. Since then, the European Space Agency’s Mars Express has discovered several underground ponds of water which remain in a liquid state thanks to the presence of magnesium perchlorate—salt.

In order to live—even temporarily—on Mars, not to mention to return to Earth, astronauts will need to manufacture some of the necessities, including water and fuel, on the Red Planet. NASA’s Perseverance rover is en-route to Mars now, carrying instruments that will use high-temperature electrolysis. However, the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) will be producing oxygen only, from the carbon dioxide in the air.

The system developed in Ramani’s lab can produce 25 times more oxygen than MOXIE using the same amount of power. It also produces hydrogen, which could be used to fuel astronauts’ trip home.

“Our novel brine electrolyzer incorporates a lead ruthenate pyrochlore anode developed by our team in conjunction with a platinum on carbon cathode” Ramani said. “These carefully designed components coupled with the optimal use of traditional electrochemical engineering principles has yielded this high performance.”

The careful design and unique anode allow the system to function without the need for heating or purifying the water source.

“Paradoxically, the dissolved perchlorate in the water, so-called impurities, actually help in an environment like that of Mars,” said Shrihari Sankarasubramanian, a research scientist in Ramani’s group and joint first author of the paper.

“They prevent the water from freezing,” he said, “and

Read more

It’s Time For Elon Musk To Admit The Significance Of Hydrogen Fuel Cells

Co-founder and CEO of HyPoint, the company developing zero-carbon emission hydrogen fuel cell systems for aviation and urban air mobility.

“Fuel cells = fool sells,” Tesla CEO Elon Musk tweeted on June 10. “Staggeringly dumb,” he continued. As CNBC noted, Musk has previously “dismissed hydrogen fuel cells as ‘mind-bogglingly stupid.'” He has also “called them ‘fool cells,’ a ‘load of rubbish,’ and told Tesla shareholders at an annual meeting years ago that ‘success is simply not possible.'”

Clearly, Musk is not a fan of hydrogen fuel cells — at least not for use in cars — which makes sense since he built the Tesla empire on lithium-ion batteries. 

The debate between lithium-ion and hydrogen has raged for decades. Both can be used as clean, zero-emission alternatives to fossil fuels, but while hydrogen fuel cells have been around much longer (indeed, it is what NASA used to put men on the moon in 1969), it was lithium-ion batteries that ultimately proved much easier to commercialize, particularly for use in passenger cars.

Part of that is because hydrogen fuel cells are more complex; they generate energy by creating and harnessing chemical reactions between hydrogen and oxygen while leaving water vapor as the only emission. And while hydrogen is lightweight, incredibly efficient and the most abundant resource in the universe, it currently takes a lot of energy to harness hydrogen.

“Hydrogen is an energy storage mechanism. It’s not a source of energy,” Musk said at a 2015 press conference. “Electrolysis is extremely inefficient as an energy process. If you took a solar panel and used the energy from that solar panel to just charge your battery pack directly compared to trying to split water, take the hydrogen, dump the oxygen, compress the hydrogen to an extremely high pressure or liquefy it and then put it in a car and run a fuel cell, it is about half the efficiency. It’s terrible.”

In some ways, Musk is right. For passenger cars, the economics for hydrogen just aren’t there yet, nor is the infrastructure. However, he’s missing the ways in which hydrogen fuel cells fit into the bigger picture wherein the economics do make sense — greening the electrical grid and zero-emission aviation, trucking, shipping, urban air mobility, space travel and more.

Governments and leaders around the world are rallying behind hydrogen as a key component to their plans for addressing climate change, not just in the transportation sector but across their entire energy grid. Consider that the European Commission announced its Hydrogen Strategy for a climate-neutral Europe in which it said that hydrogen is “an important part of the solution to meet the 2050 climate neutrality goal of the European Green Deal.” Democratic presidential candidate Joe Biden announced a $2 trillion clean energy plan that includes renewable hydrogen technology innovation. And Boris Johnson announced 335 million pounds ($446 million) in funding to help drive down greenhouse gas emissions, including the development of hydrogen fuel. Those announcements were made just within the

Read more

Popeye would approve: Spinach could hold key to renewable fuel cell catalysts

Popeye reaches for a can of spinach in a still from an unidentified <em>Popeye</em> film, c. 1945. Scientists at American University believe the leafy green has the potential to help power future fuel cells.
Enlarge / Popeye reaches for a can of spinach in a still from an unidentified Popeye film, c. 1945. Scientists at American University believe the leafy green has the potential to help power future fuel cells.

Paramount Pictures/Courtesy of Getty Image

When it comes to making efficient fuel cells, it’s all about the catalyst. A good catalyst will result in faster, more efficient chemical reactions and, thus, increased energy output. Today’s fuel cells typically rely on platinum-based catalysts. But scientists at American University believe that spinach—considered a “superfood” because it is so packed with nutrients—would make an excellent renewable carbon-rich catalyst, based on their proof-of-principle experiments described in a recent paper published in the journal ACS Omega. Popeye would definitely approve.

The notion of exploiting the photosynthetic properties of spinach has been around for about 40 years now. Spinach is plentiful, cheap, easy to grow, and rich in iron and nitrogen. Many (many!) years ago, as a budding young science writer, I attended a conference talk by physicist Elias Greenbaum (then with Oak Ridge National Labs) about his spinach-related research. Specifically, he was interested in the protein-based “reaction centers” in spinach leaves that are the basic mechanism for photosynthesis—the chemical process by which plants convert carbon dioxide into oxygen and carbohydrates.

There are two types of reaction centers. One type, known as photosystem 1 (PS1), converts carbon dioxide into sugar; the other, photosystem 2 (PS2), splits water to produce oxygen. Most of the scientific interest is in PS1, which acts like a tiny photosensitive battery, absorbing energy from sunlight and emitting electrons with nearly 100-percent efficiency. In essence, energy from sunlight converts water into an oxygen molecule, a positively charged hydrogen ion, and a free electron. These three molecules then combine to form a sugar molecule. PS1s are capable of generating a light-induced flow of electricity in fractions of a second.

Granted, it’s not a huge amount of power, but it is sufficient to one day run small molecular machines. Greenbaum’s work held promise for building artificial retinas, for instance, replacing damaged retinal cells with light-sensitive PS1s to restore vision in those suffering from a degenerative eye condition. Since PS1s can be tweaked to behave like diodes, passing current in one direction but not the other, they could be used to construct logic gates for a rudimentary computer processor if one could connect them via molecule-sized wires made of carbon nanotubes.

Greenbaum is just one of many researchers who are interested in the electrochemical properties of spinach. For instance, in 2012, scientists at Vanderbilt University combined PS1s with silicon to get current levels nearly 1,000 times higher than achieved when depositing the protein centers onto metals, along with a modest increase in voltage. The goal was to eventually build “biohybrid” solar cells that could compete with standard silicon solar cells in terms of voltage and current levels. A 2014 paper by Chinese researchers reported on experiments to collect activated carbon from spinach for capacitor electrodes, while just last December, another

Read more