Quantum computing may make current encryption obsolete, a quantum internet could be the solution

“The quantum threat is basically going to destroy the security of networks as we know them today,” declared Bruno Huttner, who directs strategic quantum initiatives for Geneva, Switzerland-based ID Quantique. No other commercial organization since the turn of the century has been more directly involved in the development of science and working theories for the future quantum computer network.

One class of theory involves cryptographic security. The moment a quantum computer (QC) breaks through the dam currently held in place by public-key cryptography (PKC), every encrypted message in the world will become vulnerable. That’s Huttner’s “quantum threat.”

bruno-huttner-1.jpg

“A quantum-safe solution,” he continued, speaking to the Inside Quantum Technology Europe 2020 conference in late October, “can come in two very different aspects. One is basically using classical [means] to address the quantum threat. The other is to fight quantum with quantum, and that’s what we at ID Quantique are doing most of the time.”

There is a movement called post-quantum cryptography (PQC), which incorporates efforts to generate more robust classical means to secure encrypted communications, once quantum methods are made reliable. The other method, to which Huttner subscribes, seeks to encrypt all communications through quantum means. Quantum key distribution (QKD) involves the generation of a cryptographic key by a QC, for use in sending messages through a quantum information network (QIN).

Interfacing a QIN with an electronic Internet, the way we think about such connections today, is physically impossible. Up until recently, it’s been an open question whether any mechanism could be created, however fantastic or convoluted it may become, to exchange usable information between these two systems — which, at the level of physics, reside on different planes of existence.

Could a quantum Internet connect non-quantum computers?

At IQT Europe, however, there were notes of hope.

matthias-van-den-bossche-edit.jpg

“I don’t see why you would need a quantum computer,” remarked Mathias Van Den Bossche, who directs research into telecommunications and navigation systems for orbital satellite components producer Thales Alexia Space, “to operate a quantum information network. Basically the tasks will be rather simple.”

The implications of what Van Den Bossche is implying, during a presentation to IQT Europe, may not be self-evident today, though certainly they will be over the course of history. A quantum information network (QIN) is a theoretical concept, enabling the intertwining of pairs of quantum computers (QC) as though they were physically joined to one another. The product of a QIN connection would be not so much an interfacing of two processors but a binding of two systems, whose resulting computational limit would be 2 to the power of the sum of their quantum components, or qubits. It would work, so long as our luck with leveraging quantum mechanics the way we’ve done so far, continues to pan out in our favor.

Van Den Bossche’s speculation is not meant to imply that quantum networking could be leveraged to bind together conventional, electronic computers in the same way — for example, giving any two desktop computers as

Read more