NASA Designs Transforming Rover for Exploring Distant Worlds

One of the challenges of exploring distant worlds is the variety of terrains that a vehicle might encounter there. There could be flat planes, which are relatively easy to traverse in a wheeled vehicle, and there could be steep slopes, which are much harder. That’s why NASA is developing a new type of rover that can transform to take a shape most suited to the environment.

The DuAxel rover is made up of two individual rovers with two wheels each, both called Axel. Together, the four-wheeled rover can travel across rugged terrain and drive across considerable distances. But when it approaches difficult terrain, the two Axels can split apart, with the rear one staying in place while the front one moves forward on a single axel. The two remain connected by a tether, and the front half can investigate hard-to-reach objects by rappelling down slopes while staying safely connected to its back half.

Terrain The DuAxel rover is seen here participating in field tests in the Mojave Desert. The four-wheeled rover is composed of two Axel robots. One part anchors itself in place while the other uses a tether to explore otherwise inaccessible terrain.
The DuAxel rover is seen here participating in field tests in the Mojave Desert. The four-wheeled rover is composed of two Axel robots. One part anchors itself in place while the other uses a tether to explore otherwise inaccessible terrain. NASA/JPL-Caltech/J.D. Gammell

To find out if the concept worked as well in practice as it does in theory, NASA engineers took a sample of the rover to the Mojave Desert in California and put it through a series of tests that simulated the kinds of challenges a rover might encounter on another planet.

The rover aced its tests, according to Issa Nesnas, a robotics technologist at JPL: “DuAxel performed extremely well in the field, successfully demonstrating its ability to approach a challenging terrain, anchor, and then undock its tethered Axel rover. Axel then autonomously maneuvered down steep and rocky slopes, deploying its instruments without the necessity of a robotic arm.”

With the rover able to split in this way, NASA says it could allow the exploration of features like crater walls, pits, scarps, vents, and other extreme terrains on distant worlds. It’s possible that in the future, multiple Axel robots could be combined together in a modular system to haul heavy payloads, or one robot could replace another if it failed mid-mission.

“DuAxel opens up access to more extreme terrain on planetary bodies such as the moon, Mars, Mercury, and possibly some icy worlds, like Jupiter’s moon Europa,” Nesnas said.

For now, the team will continue refining DuAxel and wait for it to be assigned a destination to explore in the future.

Editors’ Recommendations




Source Article

Read more

Nature is inspiring radical designs

From birds that can fly for months on end to giant redwoods stretching hundreds of feet into the air, the natural world inspires awe and wonder.

For thousands of years, humanity’s appreciation of nature has led to countless works of literature, art, and even innovations in design and engineering.

Examples of the latter include the long, pointy nose of the 500 Series Shinkansen trains used in Japan.

Inspired by the beak of the kingfisher, the high-speed train’s elongated tip was designed to, among other things, stop the loud noise — described by many as a “boom” — that would occur each time it passed through a tunnel at speed. 

The above tweak can be described as a form of biomimicry. Defined as “a practice that learns from and mimics the strategies used by species alive today” by the Biomimicry Institute, some think the concept will have an important role to play when it comes to sustainability.

Janine Benyus is co-founder of the Biomimicry Institute. “I think people are going to biomimicry for the ‘sustainability win’ but they stay because of the novelty, because what they’ve found is category-disrupting platform technologies,” she told CNBC’s Sustainable Energy.

One example of bio-inspired design can be found at a desalination project on the Greek island of Tinos, in the Aegean Sea.

“We call it (the) Mangrove Technology Platform because we take … inspiration from the mangrove ecosystem,” Alessandro Bianciardi, an environmental engineer involved in the scheme, told CNBC.

Bianciardi is co-founder of a start-up called Planet which focuses on “biologically inspired design for sustainable innovation.” In reference to the Greek project, he explained that mangroves were able to colonize empty coastal areas because they had “the capacity to desalinate water.”

“As it grows, it creates conditions conducive for other species … slowly and together, they build up an entire ecosystem, where before there was nothing,” he added. “So the idea here, the analogy, is to reproduce this type of process but with technologies.”

The scheme in Tinos uses a collection of solar stills – kit that harnesses the heat of the sun alongside evaporation and condensation to purify saltwater and brine.

In addition to the purified water, which is used to grow tropical crops such as pineapple, another by-product of the process is salt.

“It’s very important because it allows (us) to utilize saline water to grow crops,” Bianciardi said. “And eventually, in other locations, it could be used to regenerate land where land … is not productive anymore.”

While systems such as the one in Greece are interesting and show potential, there are also challenges: such as getting “bio-inspired” projects beyond the prototype stage.

“First of all, when you try to emulate nature, you must be aware that sometimes natural processes are done at small-scale and in milder conditions than the ones that are needed for our society,” Bianciardi said.

“So what happens is that, sometimes, when you try to scale up (a) natural process, you are not able to reproduce that.”

He

Read more