Why there’s global interest in a geothermal project in Beaver County

SALT LAKE CITY — Imagine having an unlimited supply of clean, renewable energy at your feet that could revolutionize the nation’s — and even the world’s — approach to turning on the lights in billions of homes and powering up economies across the globe.

A Utah project playing out near a little town of less than 1,500 residents could transform what is only imagination into a formidable reality by using the first-of-its-kind technology that reaches thousands upon thousands of feet underground to harness geothermal resources on a commercial scale.

A drone view overlooks the sight of the FORGE Project in Beaver County that seeks to use the first-of-its-kind technology to tap renewable, geothermal energy deep under the ground.
Eric Larson Flash Point, Salt Lake City

The possibilities are endless if the technology is proven successful, and the project in Milford, Beaver County, spearheaded by the University of Utah’s Energy & Geoscience Institute is being watched by a lot of counties — Germany, Japan, China, the United Kingdom.

“There’s worldwide interest,” said Joseph Moore, principal investigator of the Utah Frontier Observatory for Research in Geothermal Energy, or what they call FORGE, which is funded by the U.S. Department of Energy at a tune of some $200 million.

The project hit a milestone recently with the start of the drilling of one of two deep, deviated wells that ultimately reach depths of 10,800 feet underground and are seeking to capture geothermal energy bubbling at 437 degrees.

The enhanced geothermal technology works like a radiator, if you will.

The well will go vertically to a depth of 6,000 feet and make a 65-degree turn. The total length of the well will be approximately 11,000 feet with the “toe” — or the end of the well — reaching a vertical depth of 8,500 feet.

The Utah FORGE Project

This well will serve as the conduit of injected water, at 2,000 gallons per minute, to be circulated through the fractures it makes in the hard granite underground rock. The second deviated well will then bring that water up, only to be injected again, over and over.

This is the first project of its kind to tackle this challenge while drilling in hot, hard crystalline granite.

Ultimately the idea is to use this “radiator” process to generate steam to power a turbine to turn it into energy.

This is the first research attempt to harness geothermal energy using such a drastic angle of 65 degrees, Moore said.

“Most geothermal wells are pretty close to vertical and about 30 to 40 degrees.”

While geothermal resources across the United States are being used for energy — Utah ranks third in the country for its geothermal energy output — no one has been quite able to figure out how to make it economically viable on a commercial scale.

That challenge is what is fueling the U.S. Department of Energy’s interest and funding. It picked Utah out of four other competitors across the country to test this technology and to take it to market.