OSIRIS-REx successfully stows sample of asteroid Bennu

OSIRIS-REx successfully stows sample of asteroid Bennu
Taken on Oct. 28 by NASA’s OSIRIS-REx spacecraft, this image shows the collector head after it was separated from the Touch-And-Go Sample Acquisition Mechanism arm. The collector head is secured onto the capture ring in the Sample Return Capsule. Credit: NASA/Goddard/University of Arizona/Lockheed Martin

NASA’s University of Arizona-led OSIRIS-REx mission has successfully stowed the spacecraft’s Sample Return Capsule and its abundant sample of asteroid Bennu. On Oct. 28, the mission team sent commands to the spacecraft, instructing it to close the capsule—marking the end of one of the most challenging phases of the mission.


“I’m very thankful that our team worked so hard to get this sample stowed as quickly as they did,” said Dante Lauretta, OSIRIS-REx principal investigator and a professor planetary sciences at the University of Arizona. “Now, we can look forward to receiving the sample here on Earth and opening up that capsule.”

“This achievement by OSIRIS-REx on behalf of NASA and the world has lifted our vision to the higher things we can achieve together, as teams and nations,” said NASA Administrator Jim Bridenstine. “Together, a team comprising industry, academia and international partners, and a talented and diverse team of NASA employees with all types of expertise, has put us on course to vastly increase our collection on Earth of samples from space. Samples like this are going to transform what we know about our universe and ourselves, which is at the base of all NASA’s endeavors.”

The mission team spent two days working around the clock to carry out the stowage procedure, with preparations for the stowage event beginning Oct. 24. The process to stow the sample is unique compared to other spacecraft operations and required the team’s continuous oversight and input over the two-day period. For the spacecraft to proceed with each step in the stowage sequence, the team had to assess images and telemetry from the previous step to confirm the operation was successful and the spacecraft was ready to continue. Given that OSIRIS-REx is currently more than 205 million miles from Earth, this required the team to also work with a greater than 18.5-minute time delay for signals traveling in each direction.

Throughout the process, the OSIRIS-REx team continually assessed the Touch-And-Go Sample Acquisition Mechanism’s wrist alignment to ensure the collector head was being placed properly into the Sample Return Capsule. Additionally, the team inspected images to observe any material escaping from the collector head to confirm that no particles would hinder the stowage process. StowCam images of the stowage sequence show that a few particles escaped during the stowage procedure, but the team is confident that a plentiful amount of material remains inside of the head.

“Given the complexity of the process to place the sample collector head onto the capture ring, we expected that it would take a few attempts to get it in the perfect position,” said Rich Burns, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Fortunately, the head was captured on the first